Hepatitis C virus (HCV) poses a worldwide health problem in that the majority of individuals exposed to HCV become chronically infected and are predisposed for developing significant liver disease. DNA microarray technology provides an opportunity to survey transcription modulation in the context of an infectious disease and is a particularly attractive approach in characterizing HCV-host interactions, since the mechanisms underlying viral persistence and disease progression are not understood and are difficult to study. Here, we describe the changes in liver gene expression during the course of an acute-resolving HCV infection in a chimpanzee. Clearance of viremia in this animal occurred between weeks 6 and 8, while clearance of residual infected hepatocytes did not occur until 14 weeks postinfection. The most notable changes in gene expression occurred in numerous interferon response genes (including all three classical interferon antiviral pathways) that increased dramatically, some as early as day 2 postinfection. The data suggest a biphasic mechanism of viral clearance dependent on both the innate and adaptive immune responses and provide insight into the response of the liver to a hepatotropic viral infection. |