You are in:Home/Publications/From Linear Programming Approach to Metaheuristic Approach: Scaling Techniques

Ass. Lect. hagar ahmed :: Publications:

Title:
From Linear Programming Approach to Metaheuristic Approach: Scaling Techniques
Authors: Elsayed Badr; Mustafa Abdul Salam; Sultan Almotairi; Hagar Ahmed
Year: 2021
Keywords: Metaheuristic; scaling techniques; linear programming; Support vector machine
Journal: Complexity
Volume: 2021
Issue: 9384318
Pages: 1-10
Publisher: Hindawi
Local/International: International
Paper Link:
Full paper hagar Ahmed abdelhalim_Hagar Ahmed Abelhalim.pdf
Supplementary materials Not Available
Abstract:

%e objective of this work is to propose ten efficient scaling techniques for the Wisconsin Diagnosis Breast Cancer (WDBC) dataset using the support vector machine (SVM). %ese scaling techniques are efficient for the linear programming approach. SVM with proposed scaling techniques was applied on the WDBC dataset. %e scaling techniques are, namely, arithmetic mean, de Buchet for three cases (p � 1, 2, and∞), equilibration, geometric mean, IBM MPSX, and Lp-norm for three cases (p � 1, 2, and∞). %e experimental results show that the equilibration scaling technique overcomes the benchmark normalization scaling technique used in many commercial solvers. Finally, the experimental results also show the effectiveness of the grid search technique which gets the optimal parameters (C and gamma) for the SVM classifier.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus