The extreme value theory is expanded by proposing and studying a new version
of the Fréchet model. Some new bivariate type extensions using Farlie–Gumbel–Morgenstern
copula, modified Farlie–Gumbel–Morgenstern copula, Clayton copula, and Renyi’s entropy copula are derived. After a quick study for its properties, different non-Bayesian estimation methods under uncensored schemes are considered, such as the maximum likelihood estimation method, Anderson–Darling estimation method, ordinary least square estimation method, Cramér–von-Mises estimation method, weighted least square estimation method, left-tail Anderson–Darling estimation method, and right-tail Anderson–Darling estimation method. Numerical simulations were performed for comparing the estimation methods using different sample sizes for three different combinations of parameters. The Barzilai–Borwein algorithm was employed via a simulation study. Three applications were presented for measuring the flexibility and the importance of the new model for comparing the competitive distributions under the uncensored scheme. Using the approach of the Bagdonavicius–Nikulin goodness-of-fit test for validation under the right censored data, we propose a modified chi-square goodness-of-fit test for the new model. The modified goodness-of-fit statistic test was applied for the right censored real data set, called leukemia free-survival times for autologous transplants. Based on the maximum likelihood estimators on initial data, the modified goodness-of-fit test recovered the loss in information while the grouping data followed chi-square distributions. All elements of the modified goodness-of-fit criteria tests are explicitly derived and given.
|