The main objective of this research is to study the shear strength outcomes from the nonlinear
constitutive reinforced concrete T-beam models and make a comparison with experimental
results. The models were performed in the finite element computer program ANSYS V-19.2 so
as to apply the 3D nonlinear analysis of flanged specimens. Ninety-six samples were tested
simply supports under two concentrated points of static loading up to failure. Several validation
studies have been carried out on flanged beams with variable flange dimensions. The current
work presents good results between experimental and numerical results about (1.03 and 0.87 %)
for the load-deflection curves and the crack patterns. Moreover, parametric studies have been
occurred to discuss the effect of structural parameters on the performance of T-section against
shear straining action. Four design parameters were arranged to involve flange dimensions,
longitudinal reinforcement in flange, concrete compressive strength “fc”, and shear span to
depth ratio. Beams were shown to obtain the load-deflection relationships, the ultimate loads,
and the crack patterns. Therefore, they are compared to the solid reference one. The flange
dimensions effect on the increased the shear strength by up to 260% of the shear strength of the
web alone, and the effect of longitudinal reinforcement in flange enhancements the shear
capacity up to 40%, finally shear span to depth ratio improvements the shear strength from 85% |