You are in:Home/Publications/SECONDARY FLOW IN NON-CIRCULAR DUCTS

Assist. Islam Othman Mohamed :: Publications:

Title:
SECONDARY FLOW IN NON-CIRCULAR DUCTS
Authors: Prof. Dr.M. G. HEGAZY Prof. Dr. OSAMA E. ABDELLATIF ;Prof. Dr. A. M. OTHMAN
Year: 2014
Keywords: Not Available
Journal: Not Available
Volume: Not Available
Issue: Not Available
Pages: Not Available
Publisher: Not Available
Local/International: Local
Paper Link: Not Available
Full paper Islam Othman Mohamed_Islam-thesis.pdf
Supplementary materials Not Available
Abstract:

This thesis considers the prediction of turbulence in complex flows using Reynolds Stress Model (RSM). The time evolution of the flow in the square ducts is simulated, and the turbulence-driven secondary flow are predicted in the case of the square duct. Results are compared to both experimental and CFD data. The mean secondary flow structures in the square duct indicate the existence of strong, counter rotating vortex pairs, which are symmetrically placed around the four outer corners of the inner square duct .The additive multigrid method is used to accelerate the convergence of the pressure Poisson equation and the appropriateness of this method to deal with the high wave number components in turbulence is considered. Parallel computing techniques are applied to assist in the solution of the Navier- Stokes equations. This study is carried out using computational fluid dynamics (CFD) simulation techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD modelling techniques solved the continuity, momentum and energy conservation equations. Throughout the investigations, numerical validation is carried out by way of comparisons of numerical results obtained from FLUENT to results reported in the work of other researcher. Good agreement is found among both predictions.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus