You are in:Home/Publications/Generalized thermoviscoelastic novel model with different fractional derivatives and multi-phase-lags

Dr. Khalil Mohamed Khalil Mohamed :: Publications:

Title:
Generalized thermoviscoelastic novel model with different fractional derivatives and multi-phase-lags
Authors: A. Soleiman; Ahmed E. Abouelregal; K. M. Khalil; M. E. Nasr
Year: 2020
Keywords: Not Available
Journal: The European Physical Journal Plus
Volume: 135
Issue: Not Available
Pages: 851
Publisher: Springer
Local/International: International
Paper Link:
Full paper Khalil Mohamed Khalil Mohamed_Soleiman2020_Article_GeneralizedThermoviscoelasticN.pdf
Supplementary materials Not Available
Abstract:

In the current investigation, we introduce a generalized modified model of thermoviscoelasticity with different fractional orders. Based on the Kelvin–Voigt model and generalized thermoelasticity theory with multi-phase-lags, the governing system equations are derived. In limited cases, the proposed model is reduced to several previous models in the presence and absence of fractional derivatives. The model is then adopted to investigate a problem of an isotropic spherical cavity, the inner surface of which is exposed to a timedependent varying heat and constrained. The system of governing differential equations has been solved analytically by applying the technique of Laplace transform. To clarify the effects of the fractional-order and viscoelastic parameters, we depicted our numerical calculations in tables and figures. Finally, the results obtained are discussed in detail and also confirmed with those in the previous literature

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus