This paper describes a methodology to identify all the parameters of a quadrotor system including the structure parameters and rotor assembly parameters. A CAD model is developed using SOLIDWORKS to calculate the mass moment of inertia and all the missing geometrical parameters. A three simple test rigs are built and used to identify the relationship between the motor input Pulse Width Modulation (PWM) signal and the angular velocity, the thrust force, and drag moment of the rotors. A simple algorithm is implemented to an inertial measurement unit (IMU) for estimating the attitude and altitude of the quadrotor. Experimental set up is built to verify and test the accuracy of these proposed techniques. A controller is designed based on the feedback linearization method such that the quadrotor attitude can be stabilized. Finally, the experimental results show the effectiveness of the proposed techniques and the controller design. |