You are in:Home/Publications/Impact of pyrethroids and organochlorine pesticides residue on IGF-1 and CYP1A genes expression and muscle protein patterns of cultured Mugil capito

Prof. Mahmoud Mokhtar Abd El Kader Moustafa :: Publications:

Title:
Impact of pyrethroids and organochlorine pesticides residue on IGF-1 and CYP1A genes expression and muscle protein patterns of cultured Mugil capito
Authors: Mahmoud M. A. Moustafa ,Afaf.Abd El Megid, Mohammad E. Abd Al Fatah, Show all 6 authors, Mahmoud A.O. Dawood
Year: 2019
Keywords: Mugil capito, Pesticides, Biochemical markers, IGF-1CYP1A Gene expression, SDS-PAGE
Journal: Ecotoxicology and Environmental Safety
Volume: 188
Issue: Not Available
Pages: 109876
Publisher: Elsevier
Local/International: International
Paper Link:
Full paper Not Available
Supplementary materials Not Available
Abstract:

This study aimed to assess the levels of pyrethroids and organochlorine residues in the tissues of cultured Mugil capito and in water samples obtained from three different sites (Al-Hamol, Al-Riad and Sidi Salem; referred to as Area 1, Area 2, and Area 3, respectively) in the Delta region, Egypt. The study also assessed the biochemical markers in exposed mullet and evaluated the impact of these residues on the expression of insulin-like growth factor 1 (IGF-1) in muscle and cytochrome P4501A (CYP1A) in liver tissues using qRT-PCR and SDS-PAGE methods. The results revealed that pesticide residue levels in the water were variable, but were lower than detected levels in fish. Significant (P < 0.05) differences were found across the three study areas in terms of serum ALT, but the serum AST level was not significantly (P > 0.05) elevated in all study regions. Serum creatinine and urea levels were significantly (P < 0.05) elevated in area 3. Furthermore, glutathione and malondialdehyde concentrations significantly increased (P < 0.05) in liver tissues in area 3. Using the qRT-PCR technique, the results revealed that the expression level of IGF-1 was most significant in area 3, while the expression level of CYP1A was most significant in area 1. The protein profile showed some differences in band numbers and molecular weights of protein bands across different regions. Overall, the alteration in biochemical parameters revealed pesticide interference with the metabolic processes of fish. Furthermore, the pesticide pollution had an effect on the expression of IGF-1 and CYP1A genes and led to changes in the protein profile. Therefore, these markers can be used to monitor fish distress following exposure to the pollutant.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus