The beany favor adversely infuences consumer acceptance of soymilk (SM) products. Thus, in this work, the co-fermentation
of isolated new yeasts (Kluyveromyces marxianus SP-1, Candida ethanolica ATW-1, and Pichia amenthionina Y) and Kluyveromyces marxianus K (a commercial yeast) along with an XPL-1 starter (including fve strains of lactic acid bacteria (LAB)) was
utilized to mend the beany favor of fermented SM (FSM) beverages. Probiotic count, pH, titratable acidity, syneresis, water holding capacity, rheological characteristics, and sensory attributes were investigated. Furthermore, the free amino acids, nucleotides,
and volatile compounds (VCs) were analyzed, also presenting the collected VC data by exploiting a principal component analysis
(PCA) and a heatmap with a hierarchical cluster analysis. The co-fermentation with Kluyveromyces marxianus SP-1 and K remarkably enhanced the LAB strain growth and acid production, improving the rheological attributes, whereas that of yeast along with
XPL-1 as a mullite starter could reduce the beany odor. PCA chart displayed that higher amounts of alcohols, ketones, acids, and
esters that signifcantly improved the favor quality of FSM beverages were generated throughout the co-fermentation process.
The co-fermentation with Pichia amenthionina Y generated the highest acetoin (36.19%) and diacetyl (2.02%), thus improving
the overall acceptance of FSM, as well as the sensory characteristics of FSM beverages with the highest umami, sweet, odorless
amino acids, and umami nucleotides, and the lowest content of alcohol and inosine. Taken together, the co-fermentation of Pichia
amenthionina Y along with XPL-1 within SM provides novel insights regarding the development of FSM and fermented beverages.
|