You are in:Home/Publications/Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model

Dr. Mohamed Elbadawy Abdelgayed Gad Kewan :: Publications:

Title:
Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model
Authors: Elbadawy M; Yamanaka M; Goto Y; Hayashi K; Tsunedomi R; Hazama S; Nagano H; Yoshida T; Shibutani M; Ichikawa R; Nakahara J; Omatsu T; Mizutani T; Katayama Y; Shinohara Y; Abugomaa A; Kaneda M; Yamawaki H; Usui T; Sasaki K
Year: 2020
Keywords: Biomarker; Liver organoid; NASH; RNA seq, EMT, Liver fibrosis
Journal: Biomaterials
Volume: 237
Issue: 119823
Pages: Not Available
Publisher: Science Direct
Local/International: International
Paper Link:
Full paper Not Available
Supplementary materials Not Available
Abstract:

Non-alcoholic steatohepatitis (NASH) is associated with liver fibrosis and cirrhosis, which eventually leads to hepatocellular carcinoma. Although several animal models were developed to understand the mechanisms of NASH pathogenesis and progression, it remains obscure. A 3D organoid culture system can recapitulate organ structures and maintain gene expression profiles of original tissues. We therefore tried to generate liver organoids from different degrees [defined as mild (NASH A), moderate (NASH B) and severe (NASH C)] of methionine- and choline-deficient diet-induced NASH model mice and analyzed the difference of their architecture, cell components, organoid-forming efficacy, and gene expression profiles. Organoids from each stage of NASH model mice were successfully generated. Interestingly, epithelial-mesenchymal transition was observed in NASH C organoids. Expression of Collagen I and an activated hepatic stellite cell marker, α-sma was upregulated in the liver organoids from NASH B and C mice. The analysis of RNA sequencing revealed that several novel genes were upregulated in all NASH liver organoids. These results suggest that our generated liver organoids from different stages of NASH diseased mice might become a useful tool for in vitro studies of the molecular mechanism of NASH development and also for identifying novel biomarkers for early diagnosis of NASH disease.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus