You are in:Home/Publications/Long-term Forecasting for Total and Sectors Electricity Demand in Egypt Using ANFIS Predictor

Dr. mohamed abd elwahab ali :: Publications:

Title:
Long-term Forecasting for Total and Sectors Electricity Demand in Egypt Using ANFIS Predictor
Authors: Mohamed A. Ali, Fahmy Bendary, Yassin, Said, M. Metwally
Year: 2015
Keywords: Not Available
Journal: MEPCON'14
Volume: December 2015
Issue: Not Available
Pages: Not Available
Publisher: Not Available
Local/International: International
Paper Link: Not Available
Full paper Not Available
Supplementary materials Not Available
Abstract:

Accurate long-term load forecasting is very important for electric utilities in planning for new plants. Also it is very significant for the routine of maintaining, scheduling annually, electrical generation, and loads. The paper presents the design of two models for long-term forecasting electricity load since year 2025. The first model is for total demand forecasting whereas, the second model is for sectors demand forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS).The paper defines the load forecast types and the summary of the most important factors affecting the load forecast in Egyptian electricity network. The research work presents the deferent analysis between the two models results. Results and forecasting performance obtained reveal the effectiveness of the proposed approach and shows that it is possible to build a high accuracy model with less historical data using a combination of neural network and fuzzy logic.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus