You are in:Home/Publications/Hybrid Orthonormal Bernstein and Block-Pulse functions wavelet scheme for solving the 2D Bratu problem

Dr. Mohamed Reda Ali Mohamed :: Publications:

Title:
Hybrid Orthonormal Bernstein and Block-Pulse functions wavelet scheme for solving the 2D Bratu problem
Authors: Mohamed R. Ali ; Adel R. Hadhoud
Year: 2019
Keywords: Orthonormal Bernstein; Block-Pulse functions wavelet scheme; Bratu problems; Nonlinear equations.
Journal: Results in Physics
Volume: 12
Issue: 1
Pages: 525-530
Publisher: ELSEVIER
Local/International: International
Paper Link:
Full paper Mohamed Reda Ali Mohamed _Mohamed R.Ali.pdf
Supplementary materials Not Available
Abstract:

In this paper, an efficient numerical scheme is settled for solving two-dimensional Bratu–Gelfand problem, namely Hybrid Orthonormal Bernstein and Block-Pulse functions wavelet (HOBW) is presented for boundary value problems administered by nonlinear partial differential equations which effectively combines the Orthonormal Bernstein, Block-Pulse functions and the generalized wavelet. Operational Matrix of integration is utilized to provide an approximate result of the BG problems. By using the Operational Matrix, differentiation is changed to the nonlinear system of equations which can be disbanded via the Newton Raphson technique. As per our concentrated inquiry there is no exact solution of the problem and can solve the problem with higher accuracy than the methodologies used to solve this problem. The result is plotted for different values of then compared with the previous numerical results obtained.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus