The blood flow with heat transportation has prominent clinical importance during the levels where the blood flow needs to be checked (surgery) and the heat transportation rate must be controlled (therapy). This work presents an analysis of the melting heat transport of blood, which consists of iron nanoparticles along free convection with cross-model and solution of the partial differential equation (PDEs) are emerged by the mathematical model. Being the importance of iron oxide nanoparticles in applications of the biomedical field due to their intrinsic properties such as colloidal stability, surface engineering capability and low toxicity, this study has been launched. Furthermore, PDEs of the problem are converted into a set of nonlinear ordinary differential equations (ODEs) by proper transformations. The solution of this system of ODEs is calculated through RK 4 method and Keller–Box scheme. Some leading points and numerical results of this study of both types of presence and absence of meting effects are tabulated.
|