This study aims to solve the nonlinear fifth-order induction motor model (FO-IMM) using the Gudermannian neural networks (GNNs) along with the optimization procedures of global search as a genetic algorithm together with the quick local search process as active-set technique (GNN-GA-AST). GNNs are executed to discretize the nonlinear FO-IMM to prompt the fitness function in the procedure of mean square error. The exactness of the GNN-GA-AST is observed by comparing the obtained results with the reference results. The numerical performances of the stochastic GNN-GA-AST are provided to tackle three different variants based on the nonlinear FO-IMM to authenticate the consistency, significance and efficacy of the designed stochastic GNN-GA-AST. Additionally, statistical illustrations are available to authenticate the precision, accuracy and convergence of the designed stochastic GNN-GA-AST. |