You are in:Home/Publications/Single and dual solutions of fractional order differential equations based on controlled Picard’s method with Simpson rule

Dr. Mourad Samir abdallah Mohmmed Semary :: Publications:

Title:
Single and dual solutions of fractional order differential equations based on controlled Picard’s method with Simpson rule
Authors: M. S. Semary, H. N. Hassan, A. G. Radwan
Year: 2017
Keywords: Fractional orderCaputo sensePicard’s methodBratu’s problemDual solutionsSine-Gordon equation
Journal: Journal of the Association of Arab Universities for Basic and Applied Sciences
Volume: 24
Issue: Not Available
Pages: 247-253
Publisher: Elsevier
Local/International: International
Paper Link:
Full paper Mourad Samir abdallah Mohmmed Semary_Article34-VOL24 (1).pdf
Supplementary materials Not Available
Abstract:

This paper presents a semi-analytical method for solving fractional differential equations with strong terms like (exp, sin, cos,…). An auxiliary parameter is introduced into the well-known Picard’s method and so called controlled Picard’s method. The proposed approach is based on a combination of controlled Picard’s method with Simpson rule. This approach can cover a wider range of integer and fractional orders differential equations due to the extra auxiliary parameter which enhances the convergence and is suitable for higher order differential equations. The proposed approach can be effectively applied to Bratu’s problem in fractional order domain to predict and calculate all branches of problem solutions simultaneously. Also, it is tested on other fractional differential equations like nonlinear fractional order Sine-Gordon equation. The results demonstrate reliability, simplicity and efficiency of the approach developed.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus