You are in:Home/Publications/Reorganizing Neural Network Systemfor Two Spirals and Linear Low-Density Polyethylene Copolymer Problems

Prof. Mostafa Mohammed Yaseen Elbakry :: Publications:

Title:
Reorganizing Neural Network Systemfor Two Spirals and Linear Low-Density Polyethylene Copolymer Problems
Authors: G. M. Behery,1 A. A. El-Harby,1 andMostafa Y. El-Bakry2
Year: 2009
Keywords: Neural Network System,Linear Low-Density Polyethylene,pressure drop,shear stress
Journal: Applied Computational Intelligence and Soft Computing
Volume: 2009
Issue: Article ID 721370
Pages: 1-11
Publisher: Hindawi Publishing Corporation
Local/International: International
Paper Link: Not Available
Full paper Mostafa Y.Elbakry_two-spirals.pdf
Supplementary materials Not Available
Abstract:

This paper presents an automatic system of neural networks (NNs) that has the ability to simulate and predict many of applied problems. The system architectures are automatically reorganized and the experimental process starts again, if the required performance is not reached. This processing is continued until the performance obtained. This system is first applied and tested on the two spiral problem; it shows that excellent generalization performance obtained by classifying all points of the two-spirals correctly. After that, it is applied and tested on the shear stress and the pressure drop problem across the short orifice die as a function of shear rate at different mean pressures for linear low-density polyethylene copolymer (LLDPE) at 190◦C. The system shows a better agreement with an experimental data of the two cases: shear stress and pressure drop. The proposed systemhas been also designed to simulate other distributions not presented in the training set (predicted) and matched them effectively.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus