You are in:Home/Publications/Porcine intestinal lymphoid tissues synthesize estradiol.

Dr. Radwa Abdelrazek Mohamed Hassan Barakat :: Publications:

Title:
Porcine intestinal lymphoid tissues synthesize estradiol.
Authors: Park CJ, Kim H, Jin J, Barakat R, Lin PC, Choi JM, Ko CJ.
Year: 2018
Keywords: Not Available
Journal: Not Available
Volume: Not Available
Issue: Not Available
Pages: Not Available
Publisher: Not Available
Local/International: International
Paper Link:
Full paper Not Available
Supplementary materials Not Available
Abstract:

Estradiol (17β-estradiol) is synthesized primarily in the gonads of both sexes and regulates the development and function of reproductive organs. Recently, we reported that intestinal lymphocyte homeostasis is regulated by estradiol synthesized de novo in the endothelial cells of the high endothelial venules (HEVs) of mesenteric lymph nodes and Peyer's patches in mice. This observation prompted us to hypothesize that HEVs of intestinal lymphoid tissues are sites of estradiol synthesis across species. In this study, we examined whether estradiol is synthesized in the intestinal lymphoid tissues of adolescent piglets. Comparisons of estradiol levels in blood and tissue showed that estradiol concentrations in mesenteric lymph nodes and Peyer's patches were significantly higher than the level in serum. Reverse transcription polymerase chain reaction showed that porcine intestinal lymphoid tissues express mRNAs for steroidogenic enzymes (StAR, 17β-Hsd,3β-Hsd, Cyp17a1, and Cyp19a1), and immunohistochemical results in ilial tissue showed expression of aromatase (CYP19) in Peyer's patch-localized endothelial cells of HEVs. When mesenteric lymph node and Peyer's patch tissues were cultured in vitro, they produced estradiol. Taken together, the results indicate that mesenteric lymph nodes and Peyer's patches are sites of estradiol synthesis in adolescent piglets.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus