You are in:Home/Publications/An Off-Line Handwritten cursive Arabic Recognition System

Prof. Rafat Alkmaar :: Publications:

Title:
An Off-Line Handwritten cursive Arabic Recognition System
Authors: Raafat A. El-Kammar, Hala H. Zayed, Lamiaa Abdallah
Year: 2003
Keywords: Not Available
Journal: The 11th International Conference on Artificial Intelligence Applications, Cairo, Egypt, February 5-8, 2003
Volume: Not Available
Issue: Not Available
Pages: Not Available
Publisher: Not Available
Local/International: International
Paper Link: Not Available
Full paper Not Available
Supplementary materials Not Available
Abstract:

This paper presents an automatic off-line handwritten cursive Arabic recognition system. The system is based on an artificial neural network classifier. The preprocessing step includes binarization, noise reduction, and thinning. A new thinning algorithm is developed that produces a skeleton of the characters without gaps or extra branches. The proposed word segmentation approach is based on following the base line of the thinned word or sub-word, the base line is calculated by analysis of horizontal density histogram. In the recognition stage, four different sets of characters have been independently considered which are: isolated, beginning, middle, and end. A neural network is used for each set. The neural network uses the principle component analysis PCA as a tool for feature extraction. Where it compresses the character to a certain number of features (feature dimension). The classification is done by MLP neural network trained with back-propagation. The system has been tested and has shown a high accuracy.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus