You are in:Home/Publications/Experimental and Numerical Investigation of Natural Convection Heat Transfer In Horizontal Elliptic Annuli

Prof. Ramadan Youssef Sakr Moustafa :: Publications:

Title:
Experimental and Numerical Investigation of Natural Convection Heat Transfer In Horizontal Elliptic Annuli
Authors: R.Y. Sakr, N.S. Berbish, A.A. Abdel-Aziz, and A.S. Hanafi
Year: 2008
Keywords: Not Available
Journal: Not Available
Volume: Not Available
Issue: Not Available
Pages: Not Available
Publisher: Not Available
Local/International: Local
Paper Link: Not Available
Full paper Ramadan Youssef Sakr Moustafa_NC-Eliptic-IJCRE.pdf
Supplementary materials Not Available
Abstract:

Experimental and numerical studies for natural convection in two dimensional regions formed by a constant flux heat horizontal elliptic tube concentrically located in a larger, isothermally cooled horizontal cylinder were investigated. Both ends of the annulus are closed. Experiments were carried out for the Rayleigh number based on the equivalent annulus gap length ranges from 1.12x107 up to 4.92x107; the elliptic tube orientation angle varies from 0o to 90o and the hydraulic radius ratio, HRR, was 6.4. These experiments were carried out for the axis ratio of an elliptic tube (minor/major=b/c) of 1:3. The numerical simulation for the problem is carried out by using commercial CFD code. The effects of the orientation angle as well as other parameters such as elliptic cylinder axis ratio and hydraulic radius ratio on the flow and heat transfer characteristics are investigated numerically. The numerical simulations covered a range of elliptic tube axis ratios from 0.1 to 0.98 and for the hydraulic radius ratios from 1.5 to 6.4. The results showed that the average Nusselt number increases as the orientation angle of the elliptic cylinder increases from 0o (the major axis is horizontal) to 90o (the major axis is vertical) and with the Rayleigh number as well. Also, the average Nusselt number decreases with the increase of the hydraulic radius ratio. An increase up to 1.75 and further increases in the hydraulic radius ratio leads to an increase in the average Nusselt number. The axis ratio of the elliptic cylinder has an insignificant effect on the average Nusselt number. Both the average and local Nusselt number from the experimental results are compared with those obtained from the CFD code. Both the fluid flow and heat transfer characteristics for different operating and geometric conditions are illustrated velocity vectors and isotherm contours that were obtained from the CFD code. Also, two correlation equations that relate the average Nusslet number with the Rayleigh number, orientation angle, and hydraulic radius ratio and axis ratio are obtained.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus