You are in:Home/Publications/Metrizability of Holonomy Invariant Projective Deformation of Sprays

Dr. Salah Gomaa Ahmed Ali Elgendi :: Publications:

Title:
Metrizability of Holonomy Invariant Projective Deformation of Sprays
Authors: Salah Elgendi & Zoltan Muzsnay
Year: 2020
Keywords: spray; projective deformation; metrizability problem; holonomy invariant function; holonomy distribution.
Journal: Canadian Mathematical Bulletin
Volume: Not Available
Issue: Not Available
Pages: 1-14
Publisher: Not Available
Local/International: International
Paper Link:
Full paper Salah Gomaa Ahmed Ali Elgendi_Master.pdf
Supplementary materials Not Available
Abstract:

In this paper, we consider projective deformation of the geodesic system of Finsler spaces by holonomy invariant functions. Starting with a Finsler spray S and a holonomy invariant function P, we investigate the metrizability property of the projective deformation ̃S = S − 2λPC. We prove that for any holonomy invariant nontrivial function P and for almost every value λ ∈ R, such deformation is not Finsler metrizable. We identify the cases where such deformation can lead to a metrizable spray. In these cases, the holonomy invariant function P is necessarily one of the principal curvatures of the geodesic structure.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus