Liver cirrhosis, the end stage of chronic liver disease, is one of the major risk factors for the development of liver cancer, and may result in premature death. This research proposes a fuzzy fibrosis decision support (F2DS) system. It is a fuzzy knowledge-based expert system for liver fibrosis stage prediction. F2DS is carefully based on a set of knowledge acquisition and machine learning techniques. In addition, the system depends on domain expert knowledge for designing the membership functions and validating the fuzzy knowledge base. It depends on a suitable list of 17 symptoms, and laboratory test features that can accurately and significantly describe fibrosis patients. The experimental results of the expert system were obtained using a real dataset from the Liver Institute, Mansoura University, Egypt, of 119 patients infected by chronic viral hepatitis C. The performance of the system was evaluated with many metrics, achieving a testing accuracy of 95.7%. The evaluation of proposed fuzzy expert system shows its capability of diagnosing the stages of liver fibrosis with a high degree of accuracy, and it can be embedded as a component in a healthcare system to assist physicians in their daily practice. In addition, students training in medicine can benefit from this system. |