The use of zinc oxide in the form of nanoparticles (ZnO-NPs) is of great benefit due to its potent effectiveness and higher bioavailability compared to zinc oxide. This study aimed to investigate the impact of dietary inclusion of different doses of ZnO-NPs on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. Eighty Japanese quails (Coturnix japonica) (45 days old) were randomly divided into four groups (20 birds for each) with 4 replicates (5 birds each). Birds in the first group were fed a basal diet alone and served as a control (C). Birds in groups 2–4 were fed the basal diet supplemented with ZnO-NPs at doses of 15 mg/kg, 30 mg/kg and 60 mg/kg for a period of 60 days. At the end of the experiment, all birds were sacrificed to collect blood in a plain vacutainer, whereas liver and brain tissues were stored frozen at –80°C. The obtained sera were used for the analysis of selected biochemical parameters, whereas tissue homogenates were used for the estimation of zinc, oxidative stress biomarkers and gene expression of selected antioxidant enzymes and cytokines.
Results: ZnO-NPs (30 and 60 mg/kg) induced a significant decrease in serum triacylglycerol (TAG) compared to the control. ZnO-NPs did not affect the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein, albumin, globulin and tissue zinc concentrations but reduced the malondialdehyde (MDA) levels compared to the control. The liver retained a higher zinc concentration than that of brain tissue. In a dose-dependent manner, ZnO-NPs upregulated the mRNA levels of antioxidant enzymes (superoxide dismutase: SOD1; catalase: CAT; glutathione peroxidase-1: GPX 1) and pro-inflammatory cytokines (interferon α: IFN-α; interleukin 6: IL- 6) in liver and brain tissues.
Conclusion: The current study suggests the inclusion of ZnO-NPs, particularly 60 mg/kg, in the diet of Japanese quails to improve antioxidant and immune status.
|