An active suspension system has better performance than a passive suspension. However, it requires a significant amount of energy and is constructed from high cost components. To solve the problem of the power required, a switchable damper suspension system has been studied. In this paper, control strategies for the switchable damper suspension system and passive are compared in terms of their relative ride performance capabilities. Practical limitations involving switching time delay and threshold delay values are modeled and their effect on the ride performance are evaluated. The four setting switchable damper is compared with the two and three setting switchable dampers. The control strategies are used to maintain suspension working space level within design limit and to minimize body acceleration level. The results showed that the four setting switchable damper gives better ride improvements compared with the two and three setting switchable dampers. |