You are in:Home/Publications/Overview of Type-2 Fuzzy logic systems. International Journal of Fuzzy System Applications (IJFSA) 2(4): 1-28. [Impact Factor: 1.65].

Dr. Assoc. Prof. Ahmad Taher Azar :: Publications:

Title:
Overview of Type-2 Fuzzy logic systems. International Journal of Fuzzy System Applications (IJFSA) 2(4): 1-28. [Impact Factor: 1.65].
Authors: Azar AT
Year: 2012
Keywords: Not Available
Journal: Not Available
Volume: Not Available
Issue: Not Available
Pages: Not Available
Publisher: Not Available
Local/International: International
Paper Link:
Full paper Not Available
Supplementary materials Not Available
Abstract:

Fuzzy set theory has been proposed as a means for modeling the vagueness in complex systems. Fuzzy systems usually employ type-1 fuzzy sets, representing uncertainty by numbers in the range [0, 1]. Despite commercial success of fuzzy logic, a type-1 fuzzy set (T1FS) does not capture uncertainty in its manifestations when it arises from vagueness in the shape of the membership function. Such uncertainties need to be depicted by fuzzy sets that have blur boundaries. The imprecise boundaries of a type-2 fuzzy set (T2FS) give rise to truth/membership values that are fuzzy sets in [0], [1], instead of a crisp number. Type-2 fuzzy logic systems (T2FLSs) offer opportunity to model levels of uncertainty which traditional fuzzy logic type1 struggles. This extra dimension gives more degrees of freedom for better representation of uncertainty compared to type-1 fuzzy sets. A type-1 fuzzy logic system (T1FLSs) inference produces a T1FS and the result of defuzzification of the T1FS, a crisp number, whereas a T2FLS inference produces a type-2 fuzzy set, its type-reduced fuzzy set which is a T1FS and the defuzzification of the type-1 fuzzy set. The type-reduced fuzzy set output gives decision-making flexibilities. Thus, FLSs using T2FS provide the capability of handling a higher level of uncertainty and provide a number of missing components that have held back successful deployment of fuzzy systems in decision making.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus