You are in:Home/Publications/Neuro-Fuzzy Applications in Dialysis Systems. In: A.T Azar (ed.), Biofeedback Systems and Soft Computing Techniques of Dialysis, Springer-Verlag GmbH Berlin/Heidelberg, Vol. 405, pp 1223-1274. DOI: 10.1007/978-3-642-27558-6_10.

Prof. Ahmad Taher Azar :: Publications:

Title:
Neuro-Fuzzy Applications in Dialysis Systems. In: A.T Azar (ed.), Biofeedback Systems and Soft Computing Techniques of Dialysis, Springer-Verlag GmbH Berlin/Heidelberg, Vol. 405, pp 1223-1274. DOI: 10.1007/978-3-642-27558-6_10.
Authors: Azar AT
Year: 2013
Keywords: Not Available
Journal: Not Available
Volume: Not Available
Issue: Not Available
Pages: Not Available
Publisher: Not Available
Local/International: International
Paper Link:
Full paper Not Available
Supplementary materials Not Available
Abstract:

Soft computing techniques are known for their efficiency in dealing with complicated problems when conventional analytical methods are infeasible or too expensive, with only sets of operational data available. Its principal constituents are fuzzy logic, Artificial Neural Network (ANN) and evolutional computing, such as genetic algorithm. Neuro-fuzzy controllers constitute a class of hybrid soft computing techniques that use fuzzy logic and artificial neural networks. The advantages of a combination of ANN and Fuzzy Inference system (FIS) are obvious. There are several approaches to integrate ANN and FIS and very often it depends on the application. This chapter gives an overview of a neuro-fuzzy system design with novel applications in dialysis using an adaptive-network-based fuzzy inference system (ANFIS) for the modeling and predicting important variables in hemodialysis process.

Google ScholarAcdemia.eduResearch GateLinkedinFacebookTwitterGoogle PlusYoutubeWordpressInstagramMendeleyZoteroEvernoteORCIDScopus