Acoustic-gravity waves (AGWs) generated in the lower atmosphere can cause the ionosphere’s ionized plasma. Therefore, the electromagnetic signals transmitted from the navigation and communication satellites can be distorted based on AGWs propagating to upper atmosphere height and then disturbing the ionosphere. In this work, total electron content (TEC) was derived from dense Hubei continuously operating reference stations (HBCORS) to detect the potential ionospheric disturbance associated with a severe thunderstorm that hit Wuhan city on March 2, 2018. TEC values were examined under meticulous observation for the space weather indices. Furthermore, a de-trending algorithm, the so-called numerical divergence by multiple intervals, was applied to TEC sequences to detect the ionospheric disturbance due to the event. The slant TEC (STEC) variations near the thunderstorm area had a higher amplitude content than those that were away from it. The STEC deviations (dTEC) have been compared with a non-lighting day. Our findings indicated that the dTEC was insignificant compared with the day of the event. Afterwards, regional ionosphere maps (RIMs) were modeled through the HBCORS data around Hubei province. RIMs were employed to analyze the vertical TEC (VTEC) response to the thunderstorm. VTEC responses were detected by a proposed de-trend method so-called differences from the average value. The ionosphere showed a positive response up to 2 TECU, especially in the northern part of Hubei province where the maximum VTEC amplitude variations coincided with the thunderstorm influence. The findings are tentatively interpreted by lightning-induced electric fields and AGWs. |